BOUNDARY LIMITS AND NON-INTEGRABILITY OF \mathcal{M} -SUBHARMONIC FUNCTIONS IN THE UNIT BALL OF \mathbb{C}^n (n > 1)

MANFRED STOLL

ABSTRACT. In this paper we consider weighted non-tangential and tangential boundary limits of non-negative functions on the unit ball B in \mathbb{C}^n that are subharmonic with respect to the Laplace-Beltrami operator $\widetilde{\Delta}$ on B. Since the operator $\widetilde{\Delta}$ is invariant under the group \mathcal{M} of holomorphic automorphisms of B, functions that are subharmonic with respect to $\widetilde{\Delta}$ are usually referred to as \mathcal{M} -subharmonic functions. Our main result is as follows: Let f be a non-negative \mathcal{M} -subharmonic function on B satisfying

$$\int_{B} (1 - |z|^{2})^{\gamma} f^{p}(z) \, d\lambda(z) < \infty$$

for some p>0 and some $\gamma>\min\{n,pn\}$, where λ is the \mathcal{M} -invariant measure on B. Suppose $\tau\geq 1$. Then for a.e. $\zeta\in S$,

$$f^{p}(z) = o\left((1 - |z|^{2})^{n/\tau - \gamma}\right)$$

uniformly as $z \to \zeta$ in each $\mathcal{T}_{\tau,\alpha}(\zeta)$, where for $\alpha > 0$ $(\alpha > \frac{1}{2}$ when $\tau = 1)$

$$\mathcal{T}_{\tau,\alpha}(\zeta) = \{ z \in B : |1 - \langle z, \zeta \rangle|^{\tau} < \alpha(1 - |z|^2) \}.$$

We also prove that for $\gamma \leq \min\{n, pn\}$ the only non-negative \mathcal{M} -subharmonic function satisfying the above integrability criteria is the zero function.

Introduction

The results of this paper were motivated by the following result of F. W. Gehring [GE] (see also [TS, Theorem IV. 41]):

Theorem A. Suppose w(z) is a non-negative subharmonic function in the unit disc |z| < 1 in \mathbb{C} satisfying

(1.1)
$$\iint_{|z|<1} w^p(z) dx dy < \infty, \quad z = x + iy,$$

for some p > 1. Then for almost every θ ,

$$w(z) = o\left((1 - |z|^2)^{-1/p}\right)$$

uniformly as $z \to e^{i\theta}$ in each non-tangential approach region $\Gamma_{\alpha}(e^{i\theta})$.

Received by the editors May 20, 1995 and, in revised form, April 1, 1996. 1991 Mathematics Subject Classification. Primary 31B25, 32F05.

This last statement is equivalent to

$$\lim_{r \to 1} \sup_{\substack{z \in \Gamma_{\alpha}(e^{i\theta})\\|z| > r}} (1 - |z|^2) w^p(z) = 0$$

for almost every θ , where for $\alpha > \frac{1}{2}$,

(1.2)
$$\Gamma_{\alpha}(e^{i\theta}) = \{z : |e^{i\theta} - z| < \alpha(1 - |z|^2), |z| < 1\}.$$

The proof of Theorem A used the Hardy-Littlewood theorem, which accounts for the assumption that p > 1.

Using techniques of potential theory, we extend the result of Gehring in several directions. First, we remove the restriction p>1 and prove that Theorem A is valid for all p, 0 . Second, in addition to non-tangential limits, we will also consider weighted boundary limits along tangential approach regions. Finally, since our methods are equally valid in the unit ball <math>B in \mathbb{C}^n , we will state and prove the result for functions that are subharmonic with respect to the Laplace-Beltrami operator or invariant Laplacian $\widetilde{\Delta}$ on B. When n=1, this is equivalent to the usual definition of a subharmonic function.

Prior to stating the main result of the paper we first introduce some notation. Let B denote the unit ball in \mathbb{C}^n with boundary S, \mathcal{M} the group of holomorphic automorphisms of B, and λ the \mathcal{M} -invariant volume measure on B. Functions that are harmonic or subharmonic with respect to the Laplace-Beltrami operator $\widetilde{\Delta}$ on B are usually referred to as \mathcal{M} -harmonic and \mathcal{M} -subharmonic functions, or also as invariant harmonic and invariant subharmonic functions.

Let $\zeta \in S$. For $\tau \geq 1$ and $\alpha > 0$ ($\alpha > \frac{1}{2}$ when $\tau = 1$), set

(1.3)
$$\mathcal{T}_{\tau,\alpha}(\zeta) = \{ z \in B : |1 - \langle z, \zeta \rangle|^{\tau} < \alpha(1 - |z|^2) \}.$$

When $\tau=1$ (and $\alpha>\frac{1}{2}$) these are the admissible approach regions of Koranyi for n>1, and the non-tangential regions Γ_{α} when n=1. When n>1, the regions $\mathcal{T}_{1,\alpha}(\zeta)$ provide non-tangential approach to ζ in the complex normal direction, but parabolic approach in the complex tangential direction. For $\tau>1$, the regions $\mathcal{T}_{\tau,\alpha}(\zeta)$ have tangential contact in all directions at ζ . For example, when n=1, $\mathcal{T}_{2,1}(\zeta)$ is the disc of radius $\frac{1}{2}$ with center $\frac{1}{2}\zeta$. For n>1, $\mathcal{T}_{2,\alpha}(\zeta)$ is an ellipsoid. With $\zeta=e_1=(1,0,...,0)$,

$$\mathcal{T}_{2,\alpha}(e_1) = \{(z_1, z') \in B : \frac{|z_1 - \frac{1}{1+\alpha}|^2}{\beta^2} + \frac{|z'|^2}{\beta} < 1\},$$

where $\beta = \alpha/(1+\alpha)$ [RU, p. 175].

The main result of the paper is as follows:

Theorem B. Let f be a non-negative \mathcal{M} -subharmonic function on B satisfying

$$(1.4) \qquad \int_{B} (1-|z|^{2})^{\gamma} f^{p}(z) d\lambda(z) < \infty$$

for some p > 0 and $\gamma > \min\{n, pn\}$. Then for each $\tau \ge 1$ and $\alpha > 0$ ($\alpha > \frac{1}{2}$ when $\tau = 1$)

$$\lim_{\rho \to 1} \sup_{z \in \mathcal{T}_{\tau,\alpha,\rho}(\zeta)} (1 - |z|^2)^{\gamma - n/\tau} f^p(z) = 0 \quad \text{for a.e. } \zeta \in S,$$

where $\mathcal{T}_{\tau,\alpha,\rho}(\zeta) = \{z \in \mathcal{T}_{\tau,\alpha}(\zeta) : \rho \le |z| < 1\}.$

When n = 1, the \mathcal{M} -invariant measure λ is given by $d\lambda(z) = (1 - |z|^2)^{-2} dx \, dy$. Thus with $\gamma = 2$ and $\tau = 1$ one obtains Theorem A for all p, 0 . Although Theorem B is stated as an almost everywhere result, the result we will prove (Theorem 3.1) will be stated in terms of of the <math>s-dimensional $(0 < s \le n)$ "non-isotropic" Hausdorff capacity or measure on S. In Theorem 3.4 we will also investigate the rate of growth of the integral means of f^p .

Since every plurisubharmonic function on B is also \mathcal{M} -subharmonic, our results are also valid for non-negative plurisubharmonic functions on B. In particular, for holomorphic functions on B we have the following result, which as the special case n = 1, $\tau = 1$, and $\gamma = 2$ includes Theorem 2 of the paper by Gehring ([GE]).

Theorem C. Let f be a holomorphic function on B for which |f| satisfies (1.4) for some p > 0 and $\gamma > n$. Suppose $\tau \ge 1$ and $\alpha > 0$ ($\alpha > \frac{1}{2}$ when $\tau = 1$). Then for almost every $\zeta \in S$,

$$f(z) = o\left((1 - |z|^2)^{(n - \gamma\tau)/p\tau}\right)$$

uniformly as $z \to \zeta$ in $\mathcal{T}_{\tau,\alpha}(\zeta)$.

The second main result of the paper concerns the following: Given 0 ,for what values of γ does there exist a non-negative \mathcal{M} -subharmonic function fon B, $f \not\equiv 0$, such that the integral in (1.4) is finite? For a holomorphic function f on B, it is easily shown (see the Remark following the proof of Theorem 4.1) that γ must be greater than n. Specifically, if f is holomorphic on B and satisfies $\int_{B} (1-|z|^{2})^{\gamma} |f(z)|^{p} d\lambda(z) < \infty$ for some p>0 and $\gamma \leq n$, then f(z)=0 for all $z \in B$. For \mathcal{M} -subharmonic functions this is still the case if p > 1. When 0 ,then, as we will see in Section 4, there exist values of $\gamma \leq n$ and non-negative \mathcal{M} subharmonic functions on B such that the integral in (1.4) is finite. However, in Theorem 4.1 we prove that if $0 and <math>\gamma \le pn$, then the only non-negative \mathcal{M} -subharmonic function f satisfying (1.4) is the zero function. This accounts for the assumption $\gamma > \min\{n, pn\}$ in the hypothesis of Theorem B. By example it will be shown that at least when n=1, this result is sharp. In this section we also consider the integrability of \mathcal{M} -subharmonic functions and non-negative \mathcal{M} -harmonic functions. In Theorem 4.2 we prove that if 0 , and h is a nonnegative \mathcal{M} -harmonic function satisfying (1.4) for some $\gamma \leq \max\{pn, (1-p)n\}$, then $h \equiv 0$. By example it will be shown that this is sharp.

Tangential boundary limits of holomorphic functions and \mathcal{M} -subharmonic functions in both the unit disc and unit ball of \mathbb{C}^n have been considered by others. Many of the results however involve the existence of pointwise boundary limits of functions in Dirichlet-type spaces or of Green potentials. In [KI2], J. R. Kinney considered tangential boundary limits of analytic functions $f(z) = \sum_{n \geq 0} a_n z^n$ in the unit disc satisfying $\sum_{n \geq 0} n^{\alpha} |a_n|^2 < \infty$ for some α , $0 < \alpha \leq 1$. This is easily shown to be equivalent to f satisfying

$$\iint_{|z|<1} (1-|z|^2)^{1-\alpha} |f'(z)|^2 \, dx \, dy < \infty.$$

The special case $\alpha = 1$ gives the usual Dirichlet space \mathcal{D} . The results of Kinney imply that every $f \in \mathcal{D}$ has \mathcal{T}_{τ} -limits almost everywhere on |z| = 1 for every $\tau \geq 1$, and also contain information about the capacities of exceptional sets. The results of Kinney have been extended by J. R. Twomey [TW] to include weights more general than n^{α} . Tangential boundary limits of functions in Dirichlet-type spaces

have also been considered by A. Nagel, W. Rudin, and J. H. Shapiro [NRS] for the upper half-space \mathbb{R}^{n+1}_+ , and by L. Rzepecki [RZ] and J. Sueiro [SU] for the unit ball B in \mathbb{C}^n

In a different direction, tangential boundary limits of Blaschke products have been studied by G. T. Cargo [CA] and J. R. Kinney [KI1], among others. These results have been extended by the author to invariant Green potentials in the unit ball of \mathbb{C}^n in [ST1] and [ST3]. The existence of tangential boundary limits of \mathcal{M} -harmonic Besov functions has been studied by K. T. Hahn and E. H. Youssfi in [HY], and for \mathcal{M} -subharmonic functions in Dirichlet-type spaces by K. T. Hahn, E. H. Youssfi, and the author in [HSY]. Tangential boundary limits of harmonic functions and Green potentials have also been considered by many authors for domains in \mathbb{R}^n ($n \geq 3$). A good reference for results in this direction is the paper by R. D. Berman and W. S. Cohn [BC]. Also, the question of integrability of nonnegative subharmonic functions on domains in \mathbb{R}^n has previously been considered by N. Suzuki in [SZ]. Weighted L^p -integrability of non-negative \mathcal{M} -superharmonic functions on B has also been considered by S. Zhao in [ZH].

2. NOTATION AND PRELIMINARY RESULTS

As in the Introduction let $B = \{z \in \mathbb{C}^n : |z| < 1\}$ denote the unit ball in \mathbb{C}^n with boundary S. Following the notation of [RU], let $d\nu$ and $d\sigma$ denote normalized Lebesgue measure on B and S respectively. For each $a \in B$, let $\varphi_a(z)$ denote the involutive automorphism of B satisfying $\varphi_a(a) = 0$, $\varphi_a(0) = a$, and $\varphi_a(\varphi_a(z)) = z$. By [RU, p.26],

(2.1)
$$1 - |\varphi_a(z)|^2 = \frac{(1 - |a|^2)(1 - |z|^2)}{|1 - \langle z, a \rangle|^2}.$$

Let \mathcal{M} denote the group of holomorphic automorphisms of B. Then any $\psi \in \mathcal{M}$ has a unique representation $\psi = U \circ \varphi_a$ for some $a \in B$ and $U \in \mathbf{U}(n)$, the group of unitary transformations of \mathbb{C}^n . Each $\psi \in \mathcal{M}$ is continuous on \overline{B} with $\psi(S) = S$. Let λ be the measure on B defined by

$$d\lambda(z) = \frac{d\nu(z)}{(1-|z|^2)^{n+1}}.$$

Then λ is invariant under \mathcal{M} ; i.e. $\int_B f(z) \, d\lambda(z) = \int_B (f \circ \psi)(z) \, d\lambda(z)$ for each $f \in L^1(d\lambda)$ and all $\psi \in \mathcal{M}$.

An upper semicontinuous function $f: B \to [-\infty, \infty)$ with $f \not\equiv -\infty$ is \mathcal{M} -subharmonic or invariant subharmonic on B if for each $a \in B$,

(2.2)
$$f(a) \le \int_S f(\varphi_a(rt)) d\sigma(t), \quad 0 < r < 1.$$

If equality holds in (2.2), then f is called \mathcal{M} -harmonic or invariant harmonic on B. Also, f is \mathcal{M} -superharmonic if -f is \mathcal{M} -subharmonic. For $f \in C^2(B)$, inequality (2.2) is equivalent to $\widetilde{\Delta}f \geq 0$, where

$$\widetilde{\Delta}f = \frac{4(1-|z|^2)}{n+1} \sum_{i,j=1}^{n} \left[\delta_{i,j} - \overline{z}_i z_j\right] \frac{\partial^2 f}{\partial z_j \partial \overline{z}_i}$$

is the Laplace-Beltrami operator or the invariant Laplacian on B. The operator $\widetilde{\Delta}$ is invariant under \mathcal{M} ; i.e., $\widetilde{\Delta}(f \circ \psi) = (\widetilde{\Delta}f) \circ \psi$ for all $\psi \in \mathcal{M}$, $f \in C^2(B)$. When

n=1,

$$\widetilde{\Delta}f = 2(1 - |z|^2)^2 \frac{\partial^2 f}{\partial z \partial \overline{z}},$$

and thus a function f on the unit disc is \mathcal{M} -subharmonic if and only if f is subharmonic.

The Green's function for the operator $\widetilde{\Delta}$ is given by $G(z, w) = g(\varphi_z(w))$, where

$$g(z) = \frac{n+1}{2n} \int_{|z|}^{1} (1-t^2)^{n-1} t^{-2n+1} dt.$$

Also, the invariant Poisson kernel P on $B \times S$ is given by

(2.3)
$$P(z,t) = \frac{(1-|z|^2)^n}{|1-\langle z,t\rangle|^{2n}}, \quad z \in B, t \in S.$$

For $a \in B$, 0 < r < 1, set

$$E(a, r) = \varphi_a(rB) = \{ z \in B : |\varphi_a(z)| < r \}.$$

By (2.1), for $z \in E(a, r)$,

(2.4)
$$\left(\frac{1-r}{1+r}\right)(1-|a|^2) \le (1-|z|^2) \le \left(\frac{1+r}{1-r}\right)(1-|a|^2).$$

The following result, the proof of which may be found in [ST1, Lemma 1]; [ST2, Lemma 8.17] will be needed.

Lemma 2.1. Let 0 < r < 1, $\alpha > 0$ and $\zeta \in S$. If $\alpha \in \mathcal{T}_{\tau,\alpha}(\zeta)$, $\tau \geq 1$, then

$$\varphi_a(rB) \subset \mathcal{T}_{\tau,c}(\zeta)$$
 for any $c \geq \alpha \left(\frac{1+r}{1-r}\right)^{\tau+1}$.

The following inequality, the proof of which may be found in [PA, Theorem 2.1] or [ST2, Proposition 10.1], is crucial in the proof of the main results.

Lemma 2.2. If f is a non-negative \mathcal{M} -subharmonic function on B, then for all $p, 0 , <math>a \in B$, and 0 < r < 1,

(2.5)
$$f^p(a) \le \frac{C(n, p, r)}{r^{2n}} \int_{E(a, r)} f^p(w) d\lambda(w)$$

where

$$C(n, p, r) = \begin{cases} (1 - r^2)^n, & 1 \le p < \infty, \\ 2^{2n/p}, & 0 < p < 1. \end{cases}$$

Remark. For $p \geq 1$, inequality (2.5) is the invariant volume mean-value inequality for the \mathcal{M} -subharmonic function f^p . For $0 , the euclidean version of (2.5) for harmonic functions in the unit disc is essentially due to G. H. Hardy and J. E. Littlewood [HL] (see also [KO, p. 253]). For harmonic functions on domains in <math>\mathbb{R}^n$ the result is due to C. Fefferman and E. Stein [FS, p. 172].

Finally, for the statement and proof of the main result we introduce the concept of "non-isotropic" s-dimensional Hausdorff capacity or measure. For $\zeta \in S$, $\delta > 0$, let $Q(\zeta, \delta)$ denote the "non-isotropic" ball in S defined by

$$Q(\zeta, \delta) = \{ \eta \in S : |1 - \langle \eta, \zeta \rangle| < \delta \}.$$

As in [CO], if K is a compact subset of S, $0 < s \le n$, the "non-isotropic" s-dimensional Hausdorff capacity of K is defined by

$$H_s(K) = \inf \sum \delta_j^s$$
,

where the infimum is over all covers $\{Q(\zeta_j, \delta_j)\}$ of K. If A is an arbitrary subset of S, then

$$H_s(A) = \sup\{H_s(K) : K \text{ compact } \subset A\}.$$

Since $\sigma(Q(\zeta, \delta)) \approx \delta^n$, when s = n, H_n is equivalent to Lebesgue measure on S. When n = 1, the "non-isotropic" Hausdorff capacity corresponds to the usual Hausdorff capacity on the boundary. The following result of W. S. Cohn will be needed for the proof of Theorem 3.1.

Lemma 2.3. [CO, Theorem 1] For a compact subset K of S, $H_s(K) > 0$ if and only if K contains the support of a positive measure μ satisfying

$$\mu(Q(\zeta, \delta)) \le C\delta^s$$
 for all $\zeta \in S, \delta > 0$,

where C is an absolute constant.

3. Tangential boundary limits of \mathcal{M} -subharmonic functions

As in (1.3), for
$$\zeta \in S$$
, $\tau \geq 1$, and $\alpha > 0$ ($\alpha > \frac{1}{2}$ when $\tau = 1$), set

$$\mathcal{T}_{\tau,\alpha}(\zeta) = \{ z \in B : |1 - \langle z, \zeta \rangle|^{\tau} < \alpha(1 - |z|^2) \}.$$

Also, for $0 < \rho < 1$, let

$$\mathcal{T}_{\tau,\alpha,\rho}(\zeta) = \{ z \in \mathcal{T}_{\tau,\alpha}(\zeta) : \rho < |z| < 1 \}.$$

The main result of the paper is as follows:

Theorem 3.1. Let f be a non-negative \mathcal{M} -subharmonic function on B satisfying

$$(3.1) \qquad \int_{B} (1-|z|^{2})^{\gamma} f^{p}(z) d\lambda(z) < \infty$$

for some p > 0 and $\gamma > \min\{n, pn\}$. Let $0 < s \le n$. Then for each $\tau \ge 1$, there exists a subset E_{τ} of S with $H_s(E_{\tau}) = 0$ such that for all $\zeta \in S \setminus E_{\tau}$ and $\alpha > 0$ $(\alpha > \frac{1}{2} \text{ when } \tau = 1)$

(3.2)
$$\lim_{\rho \to 1} \sup_{z \in \mathcal{T}_{\tau,\alpha,\rho}(\zeta)} (1 - |z|^2)^{\gamma - \frac{s}{\tau}} f^p(z) = 0.$$

Proof. Set $E(z) = E(z, \frac{1}{3})$. We first note that by Lemma 2.2 and inequality (2.4),

$$(1-|z|^2)^{\gamma-\frac{s}{\tau}}f^p(z) \le C \int_{E(z)} (1-|w|^2)^{\gamma-\frac{s}{\tau}}f^p(w) \, d\lambda(w),$$

where C is a constant depending only on n, γ , s, τ and p. Let $\tau \geq 1$, and fix $\alpha > 0$ ($\alpha > \frac{1}{2}$ if $\tau = 1$). Suppose $z \in \mathcal{T}_{\tau,\alpha}(\zeta)$. Then by Lemma 2.1, $E(z) \subset \mathcal{T}_{\tau,c}(\zeta)$ for any $c \geq \alpha 2^{\tau+1}$. Also if $|z| \geq \rho$, then by (2.4), $|w|^2 \geq 1 - 2(1 - \rho^2)$ for all $w \in E(z)$. Thus if we set $R^2 = 1 - 2(1 - \rho^2)$, $\rho \geq \sqrt{2}/2$,

$$E(z) \subset A_R = \{ z \in B : R \le |z| < 1 \}.$$

Therefore if $z \in \mathcal{T}_{\tau,\alpha,\rho}(\zeta)$, $E(z) \subset \mathcal{T}_{\tau,c,R}(\zeta)$, where c and R are determined as above. Thus

$$(3.3) (1-|z|^2)^{\gamma-\frac{s}{\tau}} f^p(z) \le C \int_{\mathcal{T}_{\tau,c,R}(\zeta)} (1-|w|^2)^{\gamma-\frac{s}{\tau}} f^p(w) d\lambda(w)$$

for all $z \in \mathcal{T}_{\tau,\alpha,\rho}(\zeta)$. For $\zeta \in S$ set

$$M_{\tau,\rho}(\zeta) = \sup\{(1-|z|^2)^{\gamma-\frac{s}{\tau}}f^p(z) : z \in \mathcal{T}_{\tau,\alpha,\rho}(\zeta)\}.$$

Then by (3.3)

(3.4)
$$M_{\tau,\rho}(\zeta) \le C \int_{T_{\tau,c,R}(\zeta)} (1 - |w|^2)^{\gamma - \frac{s}{\tau}} f^p(w) \, d\lambda(w).$$

Let μ be any positive measure on S satisfying $\mu(Q(\zeta, \delta)) \leq C \delta^s$ for all $\zeta \in S$ and $\delta > 0$. Integrating inequality (3.4) over S with respect to the measure μ gives

$$\int_{S} M_{\tau,\rho}(\zeta) d\mu(\zeta) \leq C \int_{S} \int_{A_{R}} \chi_{\mathcal{T}_{\tau,c}(\zeta)}(w) (1 - |w|^{2})^{\gamma - \frac{s}{\tau}} f^{p}(w) d\lambda(w) d\mu(\zeta),$$

which by Fubini's theorem

$$\leq C \int_{A_R} \left(\int_S \chi_{\widetilde{T}_{\tau,c}(w)}(\zeta) \, d\mu(\zeta) \right) (1 - |w|^2)^{\gamma - \frac{s}{\tau}} f^p(w) \, d\lambda(w),$$

where $\widetilde{\mathcal{T}}_{\tau,c}(w) = \{\zeta \in S : w \in \mathcal{T}_{\tau,c}(\zeta)\}$, and χ_E denotes the characteristic function of the set E. Since $|1 - \langle \frac{w}{|w|}, \zeta \rangle| \leq 2|1 - \langle w, \zeta \rangle|$ for all $w \neq 0$,

$$\widetilde{\mathcal{T}}_{\tau,c}(w) \subset Q(\frac{w}{|w|}, c'(1-|w|^2)^{1/\tau}),$$

where c' is a constant depending only on c and τ . Therefore

$$\int_{S} \chi_{\widetilde{T}_{\tau,c}(w)}(\zeta) d\mu(\zeta) = \mu(\widetilde{T}_{\tau,c}(w)) \le C (1 - |w|^2)^{s/\tau}.$$

Combining the above gives

$$\int_{S} M_{\tau,\rho}(\zeta) d\mu(\zeta) \le C \int_{A_R} (1 - |w|^2)^{\gamma} f^p(w) d\lambda(w),$$

where for $\rho \ge \sqrt{2}/2$, $R^2 = 1 - 2(1 - \rho^2)$. Since f satisfies (3.1),

$$\lim_{R\to 1} \int_{A_R} (1-|w|^2)^\gamma f^p(w)\,d\lambda(w) = 0.$$

Thus if we let $M_{\tau}(\zeta) = \lim_{\rho \to 1} M_{\tau,\rho}(\zeta)$, by Fatou's lemma and the above,

$$\int_{S} M_{\tau}(\zeta) d\mu(\zeta) \leq \lim_{\rho \to 1} \int_{S} M_{\tau,\rho}(\zeta) d\sigma(\zeta)$$

$$\leq C \lim_{R \to 1} \int_{A_{R}} (1 - |w|^{2})^{\gamma} f^{p}(w) d\lambda(w) = 0.$$

Therefore $M_{\tau}(\zeta) = 0$ μ -a.e. on S. If we set $E_{\tau} = \{\zeta \in S : M_{\tau}(\zeta) > 0\}$, then $\mu(E_{\tau}) = 0$. Since this holds for every measure μ satisfying $\mu(Q(\zeta, \delta)) \leq C \delta^s$, it follows that $H_s(E_{\tau}) = 0$, and (3.2) holds for every $\zeta \in S \setminus E_{\tau}$.

Since H_n is equivalent to Lebesgue measure on S, the special case s = n gives Theorem B of the Introduction as a corollary.

Corollary 3.2. Let f be a non-negative \mathcal{M} -subharmonic function on B satisfying (3.1) for some p > 0 and $\gamma > \min\{n, pn\}$. Then for each $\tau \geq 1$ and $\alpha > 0$ ($\alpha > \frac{1}{2}$ when $\tau = 1$),

$$\lim_{\rho \to 1} \sup_{z \in \mathcal{T}_{\tau,\alpha,\rho}(\zeta)} (1 - |z|^2)^{\gamma - \frac{n}{\tau}} f^p(z) = 0 \quad \text{for a.e.} \quad \zeta \in S.$$

From the previous corollary we also obtain the following:

Corollary 3.3. Suppose 0 and <math>f is a non-negative \mathcal{M} -subharmonic function on B satisfying (3.1) for some γ , $pn < \gamma \leq n$. Then for all τ , $1 \leq \tau \leq n/\gamma$,

1) for some
$$\gamma$$
, $pn < \gamma \le n$. Then $\int_{\substack{z \to \zeta \\ z \in \mathcal{I}_{\tau,\alpha}(\zeta)}} f(z) = 0$ for a.e. $\zeta \in S$.

Proof. With $\tau = n/\gamma$, by the previous corollary $f(z) \to 0$ as $z \to \zeta$, $z \in \mathcal{T}_{\tau,\alpha}(\zeta)$, at almost every $\zeta \in S$. If $1 \le \tau' \le \tau$, then $\mathcal{T}_{\tau',c} \subset \mathcal{T}_{\tau,c'}$, where $c' = c^{\tau'/\tau}$. Hence the result.

Theorem 3.4. Let f be a non-negative \mathcal{M} -subharmonic function on B satisfying (3.1) for some p > 0 and $\gamma > \min\{n, pn\}$. Then

$$\lim_{r \to 1} (1 - r^2)^{\gamma - n} \int_S f^p(rt) \, d\sigma(t) = 0.$$

Proof. Let $\tau = 1$ and $\alpha > \frac{1}{2}$. By (3.3)

$$(1-\rho^2)^{\gamma-n} f^p(\rho\zeta) \le C \int_{\mathcal{T}_{1,\sigma',P}(\zeta)} (1-|w|^2)^{\gamma-n} f^p(w) d\lambda(w)$$

for all $\zeta \in S$ and ρ sufficiently close to 1. As in the previous theorem, by integrating over S,

$$(1 - \rho^2)^{\gamma - n} \int_S f^p(\rho\zeta) \, d\sigma(\zeta) \le C \int_{A_R} (1 - |w|^2)^{\gamma} f^p(w) \, d\lambda(w),$$

where $R^2 = 1 - 2(1 - \rho^2)$, from which the result follows.

Remark. If $p \ge 1$, then the conclusion of Theorem 3.4 follows immediately from the fact that f^p is \mathcal{M} -subharmonic on B, and thus $\int_S f^p(rt) d\sigma(t)$ is a nondecreasing function of r, 0 < r < 1. As a consequence, if 0 < R < 1, a straightforward argument gives

$$\int_{A_R} (1 - |z|^2)^{\gamma} f^p(z) \, d\lambda(z) \ge C(1 - R^2)^{\gamma - n} \int_S f^p(Rt) \, d\sigma(t),$$

from which the conclusion follows.

4. Non-integrability of \mathcal{M} -subharmonic functions

In this section we consider integrability criteria for non-negative \mathcal{M} -subharmonic functions on B. The results of this section are motivated by the following question: Given $p, 0 , for what values of <math>\gamma$ does there exist a non-negative \mathcal{M} -subharmonic function on B such that the integral in (1.4) is finite? For non-negative subharmonic functions on domains in \mathbb{R}^n this problem was considered by N. Suzuki in [SZ].

For convenience, if $\gamma \in \mathbb{R}$ and $0 , let <math>L^p_{\gamma}$ denote the set of measurable functions f on B for which

$$(4.1) \qquad \int_{B} (1-|z|^2)^{\gamma} |f(z)|^p d\lambda(z) < \infty.$$

If $\gamma > n$, then the measure $(1 - |z|^2)^{\gamma} d\lambda(z)$ is a finite measure on B. Thus every bounded \mathcal{M} -subharmonic or \mathcal{M} -harmonic function on B is in L^p_{γ} for all p, 0 . In particular, if <math>f is a bounded holomorphic function on B, then |f| is a non-negative plurisubharmonic, and thus \mathcal{M} -subharmonic, function on B satisfying (4.1) for all $\gamma > n$ and $0 . Conversely, if <math>p \ge 1$, then, as we will prove in Theorem 4.1, the only non-negative \mathcal{M} -subharmonic function $f \in L^p_{\gamma}$ for some $\gamma \le n$ is the zero function.

If 0 , the results are somewhat different. If <math>f is holomorphic on B and $f \in L^p_{\gamma}$ for some $\gamma \le n$ and 0 , then <math>f(z) = 0 for all $z \in B$. This is due to the fact that $|f(z)|^p$ is \mathcal{M} -subharmonic for all p > 0. For \mathcal{M} -subharmonic functions however, when $0 , there exist values of <math>\gamma \le n$ and \mathcal{M} -subharmonic functions $f, f \not\equiv 0$, with $f \in L^p_{\gamma}$. Examples of such functions will be given in Examples 4.3 – 4.5

Our first result justifies the hypothesis $\gamma > \min\{n, pn\}$ of Theorem 3.1.

Theorem 4.1. (a) Let 0 . If <math>f is a non-negative \mathcal{M} -subharmonic function on B with $f \in L^p_{\gamma}$ for some $\gamma \leq \min\{n, pn\}$, then $f \equiv 0$.

(b) If 0 and <math>f is an M-subharmonic function on B with $f \in L^p_{\gamma}$ for some $\gamma \leq \min\{pn, (1-p)n\}$, then $f \equiv 0$.

Proof. (a) Suppose first that $p \ge 1$. Then f^p is also \mathcal{M} -subharmonic on B. By the \mathcal{M} -invariance of λ it is clear that $f \in L^p_{\gamma}$ if and only if $f \circ \varphi_a \in L^p_{\gamma}$ for all $a \in B$. If 0 < R < 1, then since f^p is \mathcal{M} -subharmonic,

$$\int_{A_R} (1 - |w|^2)^{\gamma} f^p(\varphi_a(w)) d\lambda(w)$$

$$\geq 2n \int_R^{(1+R)/2} r^{2n-1} (1 - r^2)^{\gamma - n - 1} \int_S f^p(\varphi_a(rt)) d\sigma(t) dr$$

$$\geq C (1 - R^2)^{\gamma - n} f^p(a).$$

Thus

$$0 \le f^p(a) \le C (1 - R^2)^{n - \gamma} \int_{A_R} (1 - |w|^2)^{\gamma} f^p(w) \, d\lambda(w).$$

If $f \in L^p_{\gamma}$ for $\gamma \leq n$, then the term on the right converges to 0 as $R \to 1$. Hence $f^p(a) = 0$ for all $a \in B$.

Suppose $0 and <math>f \in L^p_{\gamma}$. By inequality (2.4) and Lemma 2.2, for 0 < r < 1 and $t \in S$,

$$f^{p}(rt) \leq C \int_{E(rt)} f^{p}(w) d\lambda(w)$$

$$\leq C (1 - r^{2})^{-\gamma} \int_{E(rt)} (1 - |w|^{2})^{\gamma} f^{p}(w) d\lambda(w) \leq C' (1 - r^{2})^{-\gamma}$$

for some finite constant C'. Hence

$$\int_{S} f^{p}(rt) d\sigma(t) = \int_{S} f(rt) (f(rt))^{p-1} d\sigma(t)
\geq C (1 - r^{2})^{-\frac{\gamma}{p}(p-1)} \int_{S} f(rt) d\sigma(t) \geq C (1 - r^{2})^{-\gamma + \frac{\gamma}{p}} f(0).$$

Therefore by integration in polar coordinates,

$$\int_{A_R} (1 - |z|^2)^{\gamma} f^p(z) \, d\lambda(z) = 2n \int_R^1 r^{2n-1} (1 - r^2)^{\gamma - n - 1} \int_S f^p(rt) \, d\sigma(t) \, dr$$

$$\geq C f(0) \int_R^1 r^{2n-1} (1 - r^2)^{\frac{\gamma}{p} - n - 1} \, dr = +\infty$$

for all $\gamma \leq pn$. Thus the only non-negative \mathcal{M} -subharmonic function satisfying (4.1) for $\gamma \leq pn$ is the zero function.

(b) Suppose 0 and <math>f is \mathcal{M} -subharmonic on B with $f \in L^p_{\gamma}$ for some $\gamma \leq \min\{pn, (1-p)n\}$. Let $f^+(z) = \max\{f(z), 0\}$. Then f^+ is a non-negative \mathcal{M} -subharmonic function on B with $f^+ \in L^p_{\gamma}$ for some $\gamma \leq pn$. Thus by the first part of the theorem $f^+ \equiv 0$. Thus |f| = -f, which is a non-negative \mathcal{M} -superharmonic function on B. By the Riesz decomposition theorem [ST2, Corollary 6.11]; [UL, Theorem 2.16],

$$|f(z)| = \int_{B} G(z, w) du(w) + \int_{S} P(z, t) d\nu(t),$$

where ν is a finite measure on S and μ is a regular Borel measure on B satisfying

$$\int_{B} (1 - |w|^2)^n d\mu(w) < \infty.$$

Since $P(z,t) \ge c_1(1-|z|^2)^n$ and $G(z,w) \ge c_2(1-|z|^2)^n(1-|w|^2)^n$ for positive constants c_1 and c_2 .

$$|f(z)| \ge c_1 (1 - |z|^2)^n \int_B (1 - |w|^2)^n d\mu(w) + c_2 (1 - |z|^2)^n \nu(S)$$

$$\ge C (1 - |z|^2)^n,$$

where C is positive unless both μ and ν are the zero measures; i.e., $f \equiv 0$. Hence if f is not identically zero,

$$\int_{B} (1-|z|^2)^{\gamma} |f(z)|^p d\lambda(z) \ge C \int_{B} (1-|z|^2)^{\gamma+pn} d\lambda(z) = +\infty$$

for any γ satisfying $\gamma + pn \leq n$; i.e., $\gamma \leq n(1-p)$.

Remarks. (a) If f is holomorphic on B, then $|f|^p$ is \mathcal{M} -subharmonic for all p > 0. Thus the same argument as used in (a) (for $p \ge 1$) proves that if $f \in L^p_{\gamma}$ for some p > 0 and $\gamma \le n$, then f(z) = 0 for all $z \in B$.

(b) The proof of (b) also shows that if f is a non-negative \mathcal{M} -superharmonic function on B with $f \in L^p_{\gamma}$ for some $p, 0 , and <math>\gamma \leq n(1-p)$, then f(z) = 0 for all $z \in B$.

For a non-negative \mathcal{M} -harmonic function h on B, if $h \in L^p_{\gamma}$ for some $\gamma \leq \min\{pn,n\}$, then by Theorem 4.1 we must have h(z)=0 for all $z \in B$. However, when 0 , we have the following stronger result.

Theorem 4.2. Let $0 . If h is a non-negative <math>\mathcal{M}$ -harmonic function on B with $h \in L^p_{\gamma}$ for some $\gamma \leq \max\{pn, (1-p)n\}$, then $h \equiv 0$.

Proof. If $\frac{1}{2} \le p < 1$, then $\max\{pn, (1-p)n\} = pn$, and thus the conclusion follows by Theorem 4.1. Suppose now that 0 . Since <math>h is a non-negative \mathcal{M} -harmonic function on B,

$$h(z) = \int_{S} P(z,t) \, d\nu(t),$$

where ν is a finite measure on S. But then

$$\int_{B} (1-|z|^2)^{\gamma} h^p(z) d\lambda(z) \ge C \nu(S)^p \int_{B} (1-|z|^2)^{\gamma+pn} d\lambda(z) = +\infty$$
 for any $\gamma \le (1-p)n$ unless $\nu(S) = 0$; i.e., $h \equiv 0$.

Example 4.3. In this example we show that the conclusion of Theorem 4.2 is best possible. As in (2.3) let P be the invariant Poisson kernel on B. Set

$$h(z) = P(z, e_1) = \frac{(1 - |z|^2)^n}{|1 - z_1|^{2n}},$$

where $e_1 = (1, 0, ..., 0)$. Then h is a non-negative \mathcal{M} -harmonic function on B, and

$$\int_{B} (1 - |z|^{2})^{\gamma} h^{p}(z) d\lambda(z)$$

$$= 2n \int_{0}^{1} r^{2n-1} (1 - r^{2})^{\gamma + pn - n - 1} \int_{S} \frac{d\sigma(t)}{|1 - rt_{1}|^{2pn}} dr.$$

By [RU, Proposition 1.4.10]

(4.2)
$$\int_{S} \frac{d\sigma(t)}{|1 - rt_{1}|^{2pn}} \le C \begin{cases} (1 - r^{2})^{n - 2pn}, & \frac{1}{2}$$

From this it now follows that for $0 , <math>h \in L^p_{\gamma}$ for all γ satisfying $\gamma > \max\{pn, (1-p)n\}$. This example also shows that the conclusion of Theorem 4.1(b) is best possible.

Example 4.4. In this example we show that when n=1 and $0 , then for each <math>\gamma > p$ there exists a non-negative subharmonic function f on $D = \{z \in \mathbb{C} : |z| < 1\}$ with $f \not\equiv 0$, such that $f \in L^p_{\gamma}$. For $0 < \beta < \frac{\pi}{2}$, consider the angular region S_{β} with vertex at 1 defined by

$$S_{\beta} = \{ z \in D : |\arg(1-z)| < \beta, |1-z| < \cos \beta \}.$$

The set S_{β} is simply a truncated Stolz's domain with $S_{\beta} \subset \Gamma_{\alpha}(1)$ where $\alpha = 1/\cos \beta$. Let φ_{β} be a conformal mapping of S_{β} onto D, mapping the boundary of S_{β} onto the boundary of D with $\varphi_{\beta}(1) = 1$ Consider the function f_{β} defined on D by

$$f_{\beta}(z) = \begin{cases} P(\varphi_{\beta}(z), 1), & z \in S_{\beta}, \\ 0, & z \in D \setminus S_{\beta}, \end{cases}$$

where $P(w,1) = \frac{1-|w|^2}{|1-w|^2}$ is the Poisson kernel on D. Thus $P(\varphi_{\beta}(z),1)$ is harmonic on S_{β} and 0 on $\partial S_{\beta} \setminus \{1\}$. Hence the function f_{β} is subharmonic on D.

As in [MA, Lemma 2.2], there exists a non-zero holomorphic function h defined on a neighborhood N of 1 such that

$$1 - \varphi_{\beta}(z) = (1 - z)^b h(z)$$

for all $z \in N \cap S_{\beta}$, where $b = \frac{\pi}{2\beta}$. Write $b = 1 + \epsilon(\beta)$, where $\epsilon(\beta) \to 0$ as $\beta \to \frac{1}{2}\pi$. Thus for all $z \in S_{\beta}$,

$$f_{\beta}(z) \le P(\varphi_{\beta}(z), 1) \le C \frac{1}{|1 - z|^{1 + \epsilon(\beta)}}.$$

Hence.

$$\int_D (1-|z|^2)^{\gamma} f_{\beta}^p(z) \, d\lambda(z) \leq C \int_0^1 (1-r^2)^{\gamma-2} \int_0^{2\pi} \frac{\chi_{S_{\beta}}(re^{i\theta})}{|1-re^{i\theta}|^{p+p\epsilon(\beta)}} \, d\theta \, r dr.$$

But

$$\int_0^{2\pi} \frac{\chi_{S_\beta}(re^{i\theta})}{|1 - re^{i\theta}|^{p + p\epsilon(\beta)}} d\theta \le C (1 - r^2)^{-p - p\epsilon(\beta)} \sigma(\widetilde{S}_\beta(r)) \le C_\beta (1 - r^2)^{1 - p - p\epsilon(\beta)}.$$

In the above, $\widetilde{S}_{\beta}(r) = \{ \zeta \in S : r\zeta \in S_{\beta} \}$. Therefore,

$$\int_{D} (1 - |z|^{2})^{\gamma} f_{\beta}^{p}(z) \, d\lambda(z) \leq C_{\beta} \int_{0}^{1} (1 - r^{2})^{\gamma - p - p\epsilon(\beta) - 1} r \, dr.$$

If $\gamma > p$, then we can choose β sufficiently close to $\frac{1}{2}\pi$ such that $\gamma - p - p\epsilon(\beta) > 0$, in which case the above integral is finite.

For the case n=1 another example can also be found in [SZ]. Even though it is conjectured that for $n\geq 2$ the conclusion of Theorem 4.1 is also sharp for all $p,\,0< p<1$, we have not been able to construct an appropriate example at this time. The following example does however show that for $n\geq 2$ and $\frac{1}{2}\leq p<1$, the conclusion of Theorem 4.1 is best possible.

Example 4.5. In this example we show that when n > 1 and $0 , then for each <math>\gamma > \max\{pn, \frac{n}{2}\}$ there exists a positive \mathcal{M} -subharmonic function $f \in L^p_{\gamma}$.

If $\frac{1}{2} \le p < 1$ and $\gamma > pn$, choose $\beta > 1$ such that $\gamma > \beta pn$. If $0 and <math>\gamma > \frac{n}{2} > pn$, then choose $\beta > 1$ such that

$$\frac{\gamma}{pn} > \beta > \frac{1}{2p}.$$

Thus in both cases $\gamma > \beta pn$ and $\beta p > \frac{1}{2}$. Let $f_{\beta}(z) = P^{\beta}(z, e_1)$. Since $\beta > 1$, f_{β} is \mathcal{M} -subharmonic on B. For this function

$$\int_{B} (1 - |z|^{2})^{\gamma} f_{\beta}^{p}(z) \, d\lambda(z) \le 2n \int_{0}^{1} r^{2n-1} (1 - r^{2})^{\gamma + \beta pn - n - 1} \int_{S} \frac{d\sigma(t)}{|1 - rt_{1}|^{2n\beta p}} \, dr,$$

which since $\beta p > \frac{1}{2}$, by (4.2)

$$\leq C \int_0^1 (1-r^2)^{\gamma-\beta pn-1} r^{2n-1} dr.$$

Since $\gamma > \beta pn$, this last integral is finite. Thus $f_{\beta} \in L_{\gamma}^{p}$.

References

- [BC] R. D. Berman and W. S. Cohn, Littlewood theorems for limits and growth of potentials along level sets of Hölder continuous functions, Amer. J. of Math. 114 (1991), 185–227. MR 93c:31006
- [CA] G. T. Cargo, Angular and tangential limits of Blaschke products and their successive derivatives, Canad. J. Math. 14 (1962), 334–348. MR 25:204
- [CO] W. S. Cohn, Non-isotropic Hausdorff measure and exceptional sets for holomorphic Sobolev functions, Illinois J. Math. 33 (1989), 673–690. MR 90j:32008
- [FS] C. Fefferman and S. Stein, H^p spaces of several variables, Acta Math 129 (1972), 137–193.
 MR 56:6263
- [GE] F. W. Gehring, On the radial order of subharmonic functions, Jour. Math. Soc. Japan 9 (1957), 77–79. MR 19:131e
- [HSY] K. T. Hahn, M. Stoll, and H. Youssfi, Invariant potentials and tangential boundary behavior of M-subharmonic functions in the unit ball, Complex Variables 28 (1995), 67–96.
- [HY] K. T. Hahn and H. Youssfi, Tangential boundary behavior of M-harmonic Besov functions in the unit ball, J. Math. Analysis and Appl. 175 (1993), 206–221. MR 94c:32006
- [HL] G. H. Hardy and J. E. Littlewood, Some properties of conjugate functions, J. Reine Angew. Math. 167 (1932), 403–423.
- [KII] J. R. Kinney, Boundary behavior of Blaschke products in the unit circle, Proc. Amer. Math. Soc. 12 (1961), 484–488. MR 23:A2533
- [KI2] _____, Tangential limits of functions of the class S_{α} , Proc. Amer. Math. Soc. 14 (1963), 68–70. MR 26:1466
- [KO] P. Koosis, Introduction to H^p Spaces, London Math. Soc. Lecture Notes 40 (1980). MR 81c:30062
- [MA] B. D. MacCluer, Compact composition operators on $H^p(B_n)$, Michigan Math. J. **32** (1985), 237–248. MR **86g**:47037
- [NRS] A. Nagel, W. Rudin, and J. H. Shapiro, Tangential boundary behavior of functions in Dirichlet-type spaces, Annals of Math. 116 (1982), 331–360. MR 84a:31002
- [PA] M. Pavlovic, Inequalities for the gradient of eigenfunctions of the invariant laplacian in the unit ball, Indag. Mathem., N.S. 2 (1991), 89–98. MR 92d:32008
- [RU] W. Rudin, Function Theory in the Unit Ball of Cⁿ, Springer-Verlag, New York, 1980. MR 82i:32002
- [RZ] L. Rzepecki, Boundary behavior of non-isotropic potentials in the unit ball of \mathbb{C}^n , Ph. D. Dissertation, University of South Carolina (1995).
- [ST1] M. Stoll, Tangential boundary limits of invariant potentials in the unit ball of Cⁿ, J. Math. Analysis & Appl. 177 (1993), 553-571. MR 94h:32020
- [ST2] _____, Invariant Potential Theory in the Unit Ball of \mathbb{C}^n , London Math. Soc. Lect. Note Series 199 (1994). MR 96f:31011
- [ST3] _____, Non-isotropic Hausdorff capacity of exceptional sets of invariant potentials, Potential Analysis 4 (1995), 141–155. MR 96b:31011
- [SU] J. Sueiro, Tangential boundary limits and exceptional sets for holomorphic functions in Dirichlet-type spaces, Math. Ann. 286 (1990), 661–678. MR 91b:32008
- [SZ] N. Suzuki, Nonintegrability of harmonic functions in a domain, Japan J. Math. 16 (1990), 269–278. MR 91m:31003
- [TS] M. Tsuji, Potential Theory in Modern Function Theory, Chelsea Publ. Co., New York, N.Y., 1975. MR 54:2990
- [TW] J. B. Twomey, Tangential limits for certain classes of analytic functions, Mathematika 36 (1989), 39–49. MR 91b:30100
- [UL] D. Ullrich, Radial limits of M-subharmonic functions, Trans. Amer. Math. Soc. 292 (1985), 501–518. MR 87a:31007
- [ZH] S. Zhao, On the weighted L^p-integrability of nonnegative M-superharmonic functions, Proc. Amer. Math. Soc. 115 (3) (1992), 677–685. MR 92i:31005

Department of Mathematics, University of South Carolina, Columbia, South Carolina 29208

E-mail address: stoll@math.sc.edu